

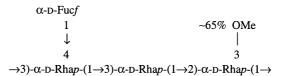
Carbohydrate Research 337 (2002) 1723-1728

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Structures of the O-polysaccharide chains of the lipopolysaccharides of *Xanthomonas campestris* pv. *phaseoli* var. *fuscans* GSPB 271 and *X. campestris* pv. *malvacearum* GSPB 1386 and GSPB 2388

Sof'ya N. Senchenkova,^a Xi Huang,^b Peter Laux,^b Yuriy A. Knirel,^{a,*} Aleksander S. Shashkov,^a Klaus Rudolph^b


^aN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospeckt 47, 119991 Moscow, GSP-1, Russia ^bInstitut für Pflanzenpathologie und Pflanzenschutz, Georg-August-Universität, Grisebachstr. 6, D-37077 Göttingen, Germany

Received 28 June 2002; accepted 6 August 2002

Abstract

O-polysaccharides of phytopathogenic bacteria *Xanthomonas campestris* were isolated by mild acid degradation of the lipopolysaccharides and studied by sugar and methylation analysis, along with ¹H and ¹³C NMR spectroscopy. The following structures of the repeating units of the polysaccharides of *X. campestris* pv. *phaseoli* var. *fuscans* GSPB 271 (1) and *X. campestris* pv. *malvacearum* GSPB 1386 and GSPB 2388 (2) were established:

$$\rightarrow$$
3)- α -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow 2)- α -D-Rhap-(1 \rightarrow

The O-polysaccharides of *X. campestris* are structurally similar to those of some *Pseudomonas syringae* strains. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Phytopathogenic bacteria; Xanthomonas campestris; O-chain polysaccharide; Lipopolysaccharide; Structure

1. Introduction

Phytopathogenic bacteria of the genus *Xanthomonas* are divided into a number of pathovars, each of which is characterised by a narrow and specific range of host plants.¹ The molecular mechanisms responsible for the narrow host specificity have not yet been unraveled.

E-mail address: knirel@ioc.ac.ru (Y.A. Knirel).

Specific structures of the outer-membrane lipopolysaccharides of phytopathogenic xanthomonads have been suggested to play a decisive role in host/parasite interactions.²

Recently, the structures of the O-specific polysaccharide chains (O-polysaccharides) of the lipopolysaccharides of *X. campestris* pvs. *begoniae* GSPB 525,³ *manihotis* GSPB 2755 and GSPB 2364,⁴ *vitians* 1839⁵ and *vignicola* GSPB 2795 and GSPB 2796⁶ have been established. Now, we report on the O-polysaccharide structures of *X. campestris* pvs. *phaseoli* var. *fuscans* GSPB 271 and *malvacearum* GSPB 1386 and GSPB

^{*} Corresponding author. Tel.: +7-095-9383613; fax: +7-095-1355328

2. Results and discussion

X. campestris pv. phaseoli var. fuscans $GSPB\ 271$.— Sugar analysis of the O-polysaccharide using GLC of the alditol acetates and the acetylated glycosides with (-)-2-octanol showed that D-rhamnose is the sole O-polysaccharide component. Structural studies of the polysaccharide by one- and two-dimensional 1H and ^{13}C NMR spectroscopy, including COSY, TOCSY, and 1H , ^{13}C NMR experiments, showed that the polysaccharide has structure 1. The specific optical rotation value of the polysaccharide, $[\alpha]_D + 75.0^\circ$ (c 2, water), confirmed that rhamnose has the D configuration {compare published data, 7 $[\alpha]_D + 78.1^\circ$ (water)}.

$$\rightarrow$$
3)- α -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow 2)- α -D-Rhap-(1 \rightarrow

This structure has been reported earlier for the Opolysaccharides of *Pseudomonas syringae*, ^{7,8} *Burkholderia cepacia*, ⁹ *Stenotrophomonas maltophilia*, ¹⁰ as well as of a common, lipopolysaccharide-associated antigen called A-band polysaccharide in *Pseudomonas aeruginosa* strains of different serotypes. ^{11–13}

X. campestris *pv*. malvacearum *GSPB 1386 and GSPB 2388*.—The ¹H and ¹³C NMR spectra of the O-polysaccharides from both strains were indistinguishable, and structural studies were performed with the polysaccharide from strain GSPB 1386. Sugar analysis of the polysaccharide revealed 3-*O*-methylrhamnose, rhamnose, and fucose. The ratios of the monosaccharides were 0.5:3.0:1 and 0.4:2.1:1 (detector response) when hydrolysis was performed with 2 M CF₃CO₂H at 100 and 120 °C, respectively. These data indicated that 3-*O*-methylrhamnose and rhamnose are less stable towards acid than fucose. Determination of the absolute configurations of the monosaccharides by GLC of the acetylated (–)-2-octyl glycosides showed that both

rhamnose and fucose are D. The D configuration of 3-O-methylrhamnose was determined by analysis of the glycosylation effects in the ¹³C NMR spectrum of the polysaccharide (see below).

Methylation analysis of the polysaccharide revealed 2,3,5-tri-O-methylfucose, 3,4-di-O-methylrhamnose, 2,4-di-O-methylrhamnose, and 2-O-methylrhamnose in the ratios 1:0.9:1.5:1.2, respectively. When CD₃I was used for methylation, a \sim 2:1 mixture of 3-O-methyl-4-O-trideuteromethylrhamnose and 3,4-bis(O-trideuteromethyl)rhamnose was detected, whereas other sugar derivatives contained only CD₃-groups. Therefore, the polysaccharide is branched with terminal fucofuranose residues and 3,4-disubstituted rhamnose residues at the branching point. The remaining rhamnose residues are 2- and 3-substituted, and \sim 65% of the 2-substituted residues is 3-O-methylated.

The 13 C NMR spectrum of the polysaccharide (Fig. 1) contained signals for anomeric carbons at δ 101.9–103.0, CH_3 –C groups (C-6 of Rha and Fuc) at δ 17.8–18.9, sugar ring carbons linked to oxygen in the region δ 69.3–85.8, and one O-methyl group at δ 58.0. The 1 H NMR spectrum of the polysaccharide (Fig. 2) contained, *inter alia*, signals for anomeric protons at δ 4.97–5.29, CH_3 –C groups (H-6 of Rha and Fuc) at δ 1.20–1.38, and one O-methyl group at δ 3.47. The NMR spectra of the polysaccharide showed the lack of the strict regularity, most likely, owing to non-stoichiometric O-methylation.

The ¹H and ¹³C NMR spectra of the polysaccharide were assigned using 2D COSY, TOCSY, and H-detected ¹H, ¹³C HMQC experiments (Tables 1 and 2). In the TOCSY spectrum, there were cross-peaks between H-1 and H-2-H-6 of Fucf but only H-2 and H-3 of Rhap residues. The other ¹H NMR signals of rhamnose residues were assigned using correlations between H-6 and H-2-H-5 in the TOCSY spectrum and between

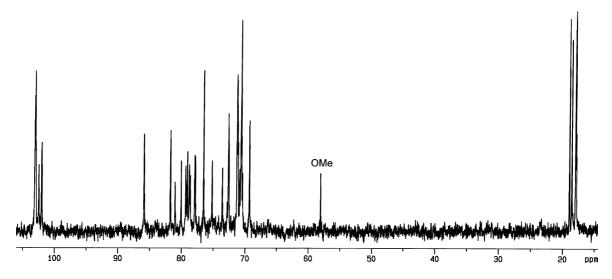


Fig. 1. ¹³C NMR spectrum of the O-polysaccharide from *X. campestris* pv. *malvacearum* GSPB 1386.

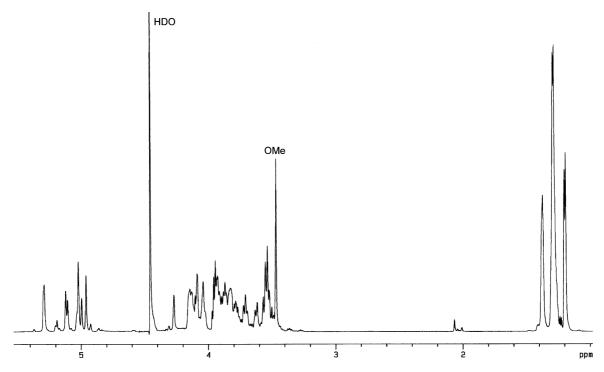


Fig. 2. ¹H NMR spectrum of the O-polysaccharide from X. campestris pv. malvacearum GSPB 1386.

coupled protons in the COSY spectrum. The spectra contained two series of signals that could be accounted for by partial O-methylation of one of the rhamnose residues ($Rhap^{I}$).

The 13 C NMR chemical shifts for C-2–C-6 of the terminal Fuc residue were typical of furanosides 14 and were close to the chemical shifts of α -fucofuranose. 8 As judged by the 13 C NMR chemical shifts, all Rha

Table 1 500-MHz ¹H NMR data of the O-polysaccharide from *X. campestris* pv. *malvacearum* GSPB 1386 (δ in ppm)

	H-1	H-2	Н-3	H-4	H-5	Н-6
O-Methylated repeating unit						
\rightarrow 2)- α -D-Rha p ¹ 3Me-(1 \rightarrow	5.13	4.28	3.63	3.54	3.92	1.29
\rightarrow 3)- α -D-Rha p^{II} -(1 \rightarrow	4.97	4.09	3.83	3.56	3.79	1.29
\rightarrow 3)-α-D-Rha p ^{III} -(1 \rightarrow \uparrow	5.03	4.15	4.04	3.71	3.93	1.38
α -D-Fuc f -(1 \rightarrow	5.29	4.11	3.96	3.54	3.87	1.20
Non-methylated repeating u	nit					
\rightarrow 2)- α -D-Rha p^{I} -(1 \rightarrow	5.11	4.05	3.94	3.53	3.87	1.29
\rightarrow 3)- α -D-Rha p ^{II} -(1 \rightarrow	5.00	4.14	3.84	3.56	3.80	1.29
\rightarrow 3)-α-D-Rha p ^{III} -(1 \rightarrow \uparrow	5.03	4.15	4.04	3.71	3.93	1.38
α -D-Fucf-(1 \rightarrow	5.29	4.11	3.96	3.54	3.87	1.20

The chemical shift for MeO is δ 3.47.

Table 2 125-MHz ¹³C NMR data of the O-polysaccharide from *X. campestris* pv. *malvacearum* GSPB 1386 (δ in ppm)

				_		
	C-1	C-2	C-3	C-4	C-5	C-6
O-Methylated repeating unit						
\rightarrow 2)- α -D-Rha p^{i} 3Me-(1 \rightarrow	101.9	75.2	81.0	72.6 b	70.8°	17.8 d
\rightarrow 3)- α -D-Rha p^{II} -(1 \rightarrow	102.4	71.1 ª	79.0	72.6 ^b	70.6°	17.9 ^d
\rightarrow 3)-α-D-Rha p ^{III} -(1 \rightarrow 4 ↑	103.0	71.2°	81.7	78.7	69.3	18.5
α -D-Fuc f -(1 \rightarrow	102.9	77.9	76.5	85.8	70.6°	18.9
Non-methylated repeating un	it					
\rightarrow 2)- α -D-Rha p^{I} -(1 \rightarrow	102.0	80.0	71.2	73.5	70.4°	17.9 ^d
\rightarrow 3)- α -D-Rha p^{II} -(1 \rightarrow	102.9	71.2°	79.3	72.8 b	70.6°	17.9 ^d
→3)- α -D-Rha p ^{III} -(1 \rightarrow	103.0	71.2°	81.7	78.6	69.3	18.5
α -D-Fuc f -(1 \rightarrow	102.9	77.8	76.5	85.8	70.6°	18.9

^{a-d}Assignment could be interchanged. The chemical shift for MeO is δ 58.0.

residues are in the pyranose form and are α -linked (e.g. compare δ 70.4–70.8 for Rha C-5 in the polysaccharide and δ 70.0 and 73.2 in α -Rhap and β -Rhap, respectively¹⁵). This conclusion was confirmed by intraresidue H-1,H-2 correlations revealed by the ROESY experiment.

Downfield displacements of the signals for C-3 of one of the non-methylated rhamnose residues (RhaII) and C-3 and C-4 of another non-methylated residue (Rha^{III}) to δ 78.6–81.7, as compared with their positions in the spectra of α -Rhap at δ 71.3,15 were observed in both major and minor series of the ¹³C NMR spectrum of the polysaccharide and showed that RhaII is 3-substituted and Rha^{III} is at the branching point and is 3,4-disubstituted. In the major series the signals for C-2 and C-3 of Rha^I were both shifted downfield to δ 75.2 and 81.0, respectively, whereas in the minor series shifted was only the signal for C-2 (to δ 80.0). Hence, all Rha^I residues are glycosylated at position 2 and most Rha^I residues are 3-O-methylated. In accordance with this finding, a ROESY experiment revealed a correlation between the signal for the O-methyl group and the H-3 signal of Rhap^I in the major series. Therefore, the polysaccharide has a tetrasaccharide repeating unit containing three residues of D-rhamnopyranose and one residue of D-fucofuranose, and in the most

tetrasaccharide units one of the rhamnose residues is O-methylated. It remains unknown whether O-methylated and non-methylated units occur in the same polysaccharide chain or form two different polysaccharides.

The ROESY spectrum of the polysaccharide showed strong cross-peaks between the following anomeric and linkage protons in both series: Rha^{II} H-1,Rha^{II} H-2, Rha^{III} H-1,Rha^{III} H-3, Rha^{III} H-1,Rha^{III} H-3, and Fuc H-1,Rha^{III} H-4. These data defined the full monosaccharides sequence in the repeating units, which is shown below.

Similar effects of glycosylation in the α -Rha $p^{\rm I3}$ Me- $(1 \rightarrow 3)$ - α -Rha $p^{\rm III}$ and α -Rha $p^{\rm I-}(1 \rightarrow 3)$ - α -Rha $p^{\rm III}$ disaccharide fragments (Table 2) indicated that 3-O-methylrhamnose has the same configuration as rhamnose, i.e. the D configuration. ¹⁶

On the basis of the data obtained, it was concluded that the O-polysaccharide of *X. campestris* pv. *malvacearum* GSPB 1386 and GSPB 2388 has the following structure:

$$\alpha$$
-D-Fuc f

1 ~65% OMe

↓

↓

4 3

 \rightarrow 3)- α -D-Rha p ^{II}-(1 \rightarrow 3)- α -D-Rha p ^{II}-(1 \rightarrow 2)- α -D-Rha p ^{II}-(1 \rightarrow 3)

A similar structure has been reported for the Opolysaccharide of *Pseudomonas syringae*, 8,17 which differs from the structure **2** in the absence of O-methyl groups and the location of Fucf at position 4 of Rha p^{II} rather than Rha p^{III} .

3. Experimental

Growth of bacteria.—Bacteria X. campestris from the culture collection 'Göttinger Sammlung Phytopathogener Bakterien' (Göttingen, Germany) were cultivated in a 100-L fermenter at 28 °C on King's Medium B¹⁸ with glycerol as carbon source. The cultures were stirred at 70 rpm at an aeration rate of 60 L/min. Cells were harvested at the late exponential phase by centrifugation, washed three times with 3 L EDTA-saline at 2 °C and lyophilised. Bacterial cells were extracted subsequently with ethanol for 2 h and acetone for 1.5 h to remove phospholipids, and then sonicated for 10 min to disintegrate the cell walls. Nucleic acids were removed by digestion with DNAse and RNAse (5 mg per g lyophilised bacteria) for 8 h. Proteins were removed by digestion with proteinase K for 12 h. The resultant cell material was dialyzed against deionised water and lyophilised.

Isolation of lipopolysaccharides and polysaccharides.—Bacterial cells were suspended in deionised water at 70 °C, mixed (1:1) with warm aq 90% phenol (70 °C), and stirred for 30 min at 70 °C. ¹⁹ The mixture was stored on ice for 12 h and centrifuged for 20 min at 17,000g. The aqueous phase was dialyzed against deionized water for 7 days and lyophilized. SDS-PAGE and staining according to the method of Tsai and Frasch²⁰ demonstrated the presence of S-type lipopolysaccharides from both strains.

Polysaccharides were prepared by degradation of the lipopolysaccharides with aq 2% acetic acid for 1.5 h at 100 °C followed by GPC on a column ($70 \text{ cm} \times 2.6 \text{ cm}$) of Sephadex G-50 using 0.05 M pyridinium acetate buffer (pH 4.5) as eluent and monitoring with a Knauer differential refractometer.

Sugar analysis.—The polysaccharide (0.5 mg) was hydrolyzed with 2 M CF₃CO₂H (100 or 120 °C, 2 h), monosaccharides were identified by GLC as the alditol acetates²¹ using a Hewlett-Packard 5880 instrument with an DB-5 capillary column and a temperature gradient of 160 °C (1 min) to 250 °C at 3 °C/min. The absolute configurations of rhamnose and fucose in the polysaccharide of X. campestris pv. malvacearum GSPB 1386 were determined by GLC of the acetylated glycosides with (-)-2-octanol²² under the same chromatographic conditions as above.

Methylation analysis.—Methylation was carried out with CH₃I or CD₃I in dimethyl sulfoxide in the pres-

ence of methylsulfinylmethanide.²³ Hydrolysis was performed with 2 M CF₃CO₂H (100 or 120 °C, 2 h), the partially methylated monosaccharides were reduced with NaBH₄, acetylated, and analyzed by GLC-MS on a Hewlett Packard 5890 chromatograph equipped with a DB-5 fused-silica capillary column and a NERMAG R10-10L mass spectrometer, using a temperature gradient of 160 °C (1 min) to 250 °C at 3 °C/min.

NMR spectroscopy.—Samples were deuterium-exchanged by freeze-drying three times from D_2O and then examined in a solution of 99.96% D_2O . Spectra were recorded using a Bruker DRX-500 spectrometer at 50 °C. Data were acquired and processed using XWIN-NMR 2.1 program. A mixing time of 120 and 200 ms was used in 2D TOCSY and ROESY experiments, respectively. Chemical shifts are reported with internal sodium 3-trimethylsilylpropanoate- d_4 (δ_H 0.00) and external acetone (δ_C 31.45).

References

- Bradbury, J. F. Guide to Plant Pathogenic Bacteria; CAB International Mycological Institute, 1986.
- 2. K. Rudolph, in Mahadevan, A. (Ed.), *Proc. IXth Intern. Conf. on Plant Pathogenic Bacteria*, Madras, India, 1998, pp 10–29.
- Senchenkova, S. N.; Shashkov, A. S.; Laux, P.; Knirel, Y. A.; Rudolph, K. Carbohydr. Res. 1999, 319, 148–153.
- Shashkov, A. S.; Senchenkova, S. N.; Laux, P.; Ahohuendo, B. C.; Kecskes, M. L.; Rudolph, K.; Knirel, Y. A. Carbohydr. Res. 2000, 323, 235–239.
- Molinaro, A.; Evidente, A.; Lanzetta, R.; Parrilli, M.; Zoina, A. Carbohydr. Res. 2000, 328, 435–439.
- Senchenkova, S. N.; Shashkov, A. S.; Kecskes, M. L.; Ahohuendo, B. C.; Knirel, Y. A.; Rudolph, K. Carbohydr. Res. 2000, 329, 831–838.
- Smith, A. R. W.; Zamze, S. E.; Munro, S. M.; Carter, K. J.; Hignett, R. C. Eur. J. Biochem. 1985, 149, 73–78.
- Knirel, Y. A.; Zdorovenko, G. M.; Shashkov, A. S.; Mamyan, S. S.; Yakovleva, L. M.; Solyanik, L. P.; Zakharova, I. Y. *Bioorg. Khim.* 1988, 14, 82–91.
- Cérantola, S.; Montrozier, H. Eur. J. Biochem. 1997, 246, 360–366.
- 10. Winn, A. M.; Wilkinson, S. G. FEMS Microbiol. Lett. 1998, 166, 57-61.
- Yokota, S.-I.; Kaya, S.; Sawada, S.; Kawamura, T.; Araki, Y.; Ito, E. Eur. J. Biochem. 1987, 167, 203–209.
- Kocharova, N. A.; Knirel, Y. A.; Kochetkov, N. K.; Stanislavsky, E. S. *Bioorg. Khim.* 1988, 14, 701–703.
- Arsenault, T. L.; Hughes, D. W.; MacLean, D. B.;
 Szarek, W. A.; Kropinski, A. M. B.; Lam, J. S. Can. J. Chem. 1991, 69, 1273–1280.
- 14. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66.
- Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59-75.
- Shashkov, A. S.; Lipkind, G. M.; Knirel, Y. A.; Kochetkov, N. K. Magn. Reson. Chem. 1988, 26, 735-747.
- 17. Ovod, V.; Knirel, Y. A.; Samson, R.; Krohn, K. J. Bacteriol. 1999, 181, 6937–6947.

- 18. King, E. O.; Ward, M. K.; Raney, D. E. *J. Lab. Clin. Med.* **1954**, *44*, 301–307.
- 19. Westphal, O.; Jann, K. *Methods Carbohydr. Chem.* **1965**, 5, 83–89.
- 20. Tsai, C. M.; Frasch, C. E. Anal. Biochem. 1982, 119, 115–119.
- 21. Sawardeker, J. S.; Sloneker, J. H.; Jeanes, A. *Anal. Chem.* **1965**, *37*, 1602–1603.
- 22. Leontein, K.; Lindberg, B.; Lönngren, J. *Carbohydr. Res.* **1978**, *62*, 359–362.
- 23. Conrad, H. E. Methods Carbohydr. Chem. 1972, 6, 361-364